[链接登录后可见]
写在前面
想必大家都有了一定的线段树基础,所以来玩点更有意思的线段树吧(
[链接登录后可见]
CF803G Periodic RMQ Problem
先来道黑题热热身
Description
题面:[链接登录后可见]
给你一个序列 a 让你支持: 区间赋值;询问区间最小值
我们觉得这个问题太水了,所以我们不会给你序列 a
而是给你序列一个长度为 n 的序列 b ,把 b 复制粘贴 k 次就可以得到 a
n \le 10^5,k \le 10^4,q \le 10^5,b_i \le 10^9
1 \le l \le r \le n \times k
Solution
维护的线段树操作不难,麻烦的地方在于对原序列的处理,理解思想后完全可以自己yy出代码。
看到 “区间覆盖,区间最小值” ,这不板子?
但是,序列长度可是 n \times k = 10^9 啊。
发现询问涉及到的点只有 10^5 级别,考虑进行离散化处理,只保留对答案有贡献的信息。
注意:对答案有贡献的信息不仅仅是询问涉及到的点,还有相邻的两个涉及到的点的区间也对答案有贡献
(因为这个区间内的最小值可能比两个端点更小)。
蓝色箭头是询问涉及过的点,相邻的两个涉及过的点的区间被压缩成一个点来处理(如果相邻两个涉及过的点之间没有区间就不压缩)。
把这两种点都放进一个新的序列(红色序列),然后在新的序列上进行修改查询操作即可。
注意映射好询问涉及到的点在红色序列中的位置。

注意将区间压缩成一个点时的处理:
- 如果区间长度超过 n,直接加入原来整段区间的最小值(
但是数据没卡这个地方)
- 如果在同一个区间内,加入这个区间内的最小值
- 如果跨越了两个区间,加入区间 [1, r] 和 [l, n] 的最小值
这种做法在复杂度和空间消耗上都比较优秀。
剩下的看代码吧,重要步骤都有注释,如果有不懂的也可以在评论区提出
Code
/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
#define orz cout<<"lkp AK IOI!"<<endl
using namespace std;
const int MAXN = 2e5+5; // 注意开的数组大小(自己算算应该用多少
const int INF = 1e9+7;
const int mod = 1e9+7;
struct Ques{
int opt, l, r, val;
}q[MAXN];
int n, K, m;
int a[MAXN], b[MAXN << 1], Cnt = 0, pre[MAXN << 1];
int date[MAXN], cnt = 0, date_num = 0;
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
struct Big_Seg{ // 采用结构体,码量会更少哦
#define lson i << 1
#define rson i << 1 | 1
struct Tree{
int min, lazy;
}tree[MAXN << 3];
void Push_up(int i) { tree[i].min = min(tree[lson].min, tree[rson].min); }
void Push_down(int i) {
if(tree[i].lazy) {
tree[lson].lazy = tree[rson].lazy = tree[i].lazy;
tree[lson].min = tree[rson].min = tree[i].lazy;
tree[i].lazy = 0;
}
}
void Build(int i, int l, int r) { //两个建树分别给两个线段树用
if(l == r) { tree[i].min = b[l]; return ; }
int mid = (l + r) >> 1;
Build(lson, l, mid), Build(rson, mid + 1, r);
Push_up(i);
}
void Build0(int i, int l, int r) {
if(l == r) { tree[i].min = a[l]; return ; }
int mid = (l + r) >> 1;
Build0(lson, l, mid), Build0(rson, mid + 1, r);
Push_up(i);
}
void Change(int i, int l, int r, int L, int R, int k) {
if(L <= l && r <= R) {
tree[i].min = tree[i].lazy = k;
return ;
}
Push_down(i);
int mid = (l + r) >> 1;
if(mid >= L) Change(lson, l, mid, L, R, k);
if(mid < R) Change(rson, mid + 1, r, L, R, k);
Push_up(i);
}
int Get_min(int i, int l, int r, int L, int R) {
if(L <= l && r <= R) return tree[i].min;
Push_down(i);
int mid = (l + r) >> 1, ans = INF;
if(mid >= L) ans = min(ans, Get_min(lson, l, mid, L, R));
if(mid < R) ans = min(ans, Get_min(rson, mid + 1, r, L, R));
return ans;
}
}Seg[2];
int main()
{
n = read(), K = read();
for(int i = 1; i <= n; ++i) a[i] = read();
Seg[0].Build0(1, 1, n); // 先对给定的小序列建树
m = read();
for(int i = 1; i <= m; ++i) {
q[i].opt = read(), q[i].l = read(), q[i].r = read();
date[++ cnt] = q[i].l, date[++ cnt] = q[i].r;
if(q[i].opt == 1) q[i].val = read();
}
sort(date + 1, date + cnt + 1); date[0] = -INF;
for(int i = 1; i <= cnt; ++i) if(date[i] != date[i - 1]) date[++ date_num] = date[i]; // 离散化
//一下是构造新序列b过程(即图中的红色序列
for(int i = 1; i < date_num; ++i) {
if(date[i] % n == 0) b[++Cnt] = a[n];
else b[++Cnt] = a[date[i] % n];
pre[i] = Cnt; // 进行第二次映射的处理
if(date[i + 1] > date[i] + 1){
if((date[i + 1] - 1) - (date[i] + 1) >= n) { // 压缩区间长度超过 n 时
b[++Cnt] = Seg[0].tree[1].min;
continue;
}
int l = (date[i] + 1) % n, r = (date[i + 1] - 1) % n; //映射到复制前的序列中的位置
if(l == 0) l = n;
if(r == 0) r = n;
if(l <= r) b[++Cnt] = Seg[0].Get_min(1, 1, n, l, r); // 在一个区间内
else b[++Cnt] = min(Seg[0].Get_min(1, 1, n, 1, r), Seg[0].Get_min(1, 1, n, l, n)); // 不在一个区间内,用两段区间合并
}
}
if(date[date_num] % n == 0) b[++Cnt] = a[n];
else b[++Cnt] = a[date[date_num] % n];
pre[date_num] = Cnt;
for(int i = 1; i <= m; ++i) {
q[i].l = lower_bound(date + 1, date + date_num + 1, q[i].l) - date; // 询问的点向离散化后映射
q[i].r = lower_bound(date + 1, date + date_num + 1, q[i].r) - date;
q[i].l = pre[q[i].l], q[i].r = pre[q[i].r]; // 向b序列中的映射
}
Seg[1].Build(1, 1, Cnt); //对 b序列建树
for(int i = 1; i <= m; ++i) { //直接修改+查询即可
if(q[i].opt == 1) Seg[1].Change(1, 1, Cnt, q[i].l, q[i].r, q[i].val);
else printf("%d\n", Seg[1].Get_min(1, 1, Cnt, q[i].l, q[i].r));
}
return 0;
}
总结
对于所维护的区间过大时,考虑离散化只留下有用的信息来达到节约空间的目的。
CF915E Physical Education Lessons
Description
题面:[链接登录后可见]
一个长度为 1e9 的 01 序列,开始都是1,要求支持区间修改 0/1 ,每次修改后都要输出整个序列中 1 的个数
Solution
1e9 开不下啊,考虑动态开点线段树
维护操作时和线段树类似,用到哪块区间就新建哪块区间(例如询问时和下放懒标记时)
Code
/*
Work by: Suzt_ilymics
Knowledge: 动态开点线段树
Time: O(能过)
当线段树维护的范围到达1e9
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
#define orz cout<<"lkp AK IOI!"<<endl
using namespace std;
const int MAXN = 15001000;
const int INF = 1e9+7;
const int mod = 1e9+7;
int n, m;
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
namespace CMT{
int root, node_num = 0, sum[MAXN], lazy[MAXN], lson[MAXN], rson[MAXN];
void Push_up(int i) { sum[i] = sum[lson[i]] + sum[rson[i]]; }
void Push_down(int i, int l, int r) { // 一次只需要开两个点,剩下的点用到的时候在开,节省空间
if(lazy[i] == -1) return ;
int mid = (l + r) >> 1; // 确定序列的长度
if(!lson[i]) lson[i] = ++ node_num; // 没有的话就开一个点
if(!rson[i]) rson[i] = ++ node_num;
sum[lson[i]] = lazy[i] * (mid - l + 1), lazy[lson[i]] = lazy[i];
sum[rson[i]] = lazy[i] * (r - mid), lazy[rson[i]] = lazy[i];
lazy[i] = -1;
}
void Change(int &now_, int l, int r, int L, int R, int val) {
if(!now_) now_ = ++ node_num; // 如果没有这个结点,新建这个结点
if(L <= l && r <= R) {
sum[now_] = (r - l + 1) * val; //
lazy[now_] = val;
return ;
}
Push_down(now_, l, r); // 如果需要更精确的序列,就下放新建结点
int mid = (l + r) >> 1;
if(mid >= L) Change(lson[now_], l, mid, L, R, val);
if(mid < R) Change(rson[now_], mid + 1, r, L, R, val);
Push_up(now_);
}
}
using namespace CMT;
int main()
{
n = read(), m = read();
memset(lazy, -1, sizeof lazy);
Change(root, 1, n, 1, n, 0); // 用0表示有工作日,1表示非工作日
for(int i = 1, l, r, k; i <= m; ++i) {
l = read(), r = read(), k = read();
Change(root, 1, n, l, r, 2 - k);
printf("%d\n", n - sum[1]);
}
return 0;
}
P6327 区间加区间sin和
Description
[链接登录后可见]
Solution
根据三角恒等变换公式,有
\sin (a+b) = \sin a \cos b + \cos a \sin b
\cos (a+b) = \cos a \cos b - \sin a \sin b
主要是要证明 \sin 能够满足区间加的性质
证明如下:
设有两个角 a, b,新加的值为 k, 则
\sin (a+k) + \sin (b+k) = (\sin a + \sin b) \cos k + (\cos a + \cos b) \sin k
将上面的公式代入化简即可,同时发现 \cos 也能化成类似的形式
\cos (a+k) + \cos (b+k) = (\cos a + \cos b) \cos k - (\sin a + \sin b) \sin k
那么一切就好做了,按照上面两个结论修改即可
Code
/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
#define int long long
#define orz cout<<"lkp AK IOI!"<<endl
using namespace std;
const int MAXN = 2e5+5;
const int INF = 1e9+7;
const int mod = 1e9+7;
int n, m;
int a[MAXN];
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
namespace Seg{
#define lson i << 1
#define rson i << 1 | 1
struct Tree{
double Sin, Cos; int lazy;
}tree[MAXN << 2];
void Push_up(int i) {
tree[i].Sin = tree[lson].Sin + tree[rson].Sin;
tree[i].Cos = tree[lson].Cos + tree[rson].Cos;
}
void Build(int i, int l, int r) {
if(l == r) {
tree[i].Sin = sin(a[l]);
tree[i].Cos = cos(a[l]);
return ;
}
int mid = (l + r) >> 1;
Build(lson, l, mid), Build(rson, mid + 1, r);
Push_up(i);
}
void Push_down(int i) {
if(tree[i].lazy) {
tree[lson].lazy += tree[i].lazy;
tree[rson].lazy += tree[i].lazy;
double Sin_lson = tree[lson].Sin, Sin_rson = tree[rson].Sin;
int tag = tree[i].lazy;
tree[lson].Sin = Sin_lson * cos(tag) + tree[lson].Cos * sin(tag);
tree[lson].Cos = tree[lson].Cos * cos(tag) - Sin_lson * sin(tag);
tree[rson].Sin = Sin_rson * cos(tag) + tree[rson].Cos * sin(tag);
tree[rson].Cos = tree[rson].Cos * cos(tag) - Sin_rson * sin(tag);
tree[i].lazy = 0;
}
}
void Add(int i, int l, int r, int L, int R, int val) {
if(L <= l && r <= R) {
double Sin = tree[i].Sin;
tree[i].Sin = tree[i].Sin * cos(val) + tree[i].Cos * sin(val);
tree[i].Cos = tree[i].Cos * cos(val) - Sin * sin(val);
tree[i].lazy += val;
return ;
}
Push_down(i);
int mid = (l + r) >> 1;
if(mid >= L) Add(lson, l, mid, L, R, val);
if(mid < R) Add(rson, mid + 1, r, L, R, val);
Push_up(i);
}
double Get_Sin(int i, int l, int r, int L, int R) {
if(L <= l && r <= R) return tree[i].Sin;
Push_down(i);
int mid = (l + r) >> 1; double ans = 0;
if(mid >= L) ans += Get_Sin(lson, l, mid, L, R);
if(mid < R) ans += Get_Sin(rson, mid + 1, r, L, R);
return ans;
}
}
signed main()
{
n = read();
for(int i = 1; i <= n; ++i) a[i] = read();
Seg::Build(1, 1, n);
m = read();
for(int i = 1, opt, l, r, val; i <= m; ++i) {
opt = read(), l = read(), r = read();
if(opt == 1) {
val = read();
Seg::Add(1, 1, n, l, r, val);
} else {
double Ans = Seg::Get_Sin(1, 1, n, l, r);
printf("%.1f\n", Ans);
}
}
return 0;
}
CF242E XOR on Segment
Description
[链接登录后可见]
Solution
手膜一下发现,当区间和加起来时不能直接进行区间异或,因为不能满足类似于上面那个题的性质
这里我们考虑使用拆位线段树
将每一个数进行二进制拆分,对每个二进制位分别建树
又因为 11=0, 01=1 和 10=1, 00=0
即,异或 1 时进行取反,否则不变
所以区间异或时取出每一位,是 1 就进行修改,否则无需修改,修改操作也十分类似于区间翻转
Code
/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
#define int long long
#define orz cout<<"lkp AK IOI!"<<endl
using namespace std;
const int MAXN = 1e5+5;
const int INF = 1e9+7;
const int mod = 1e9+7;
int n, m, ans;
int a[21][MAXN];
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
struct SEG{
#define lson i << 1
#define rson i << 1 | 1
struct Tree{
int sum, lazy, len;
}tree[MAXN << 2];
void Push_up(int i) { tree[i].sum = tree[lson].sum + tree[rson].sum; }
void Build(int i, int l, int r, int rk) {
tree[i].len = r - l + 1;
if(l == r) {
tree[i].sum = a[rk][l]; return ;
}
int mid = (l + r) >> 1;
Build(lson, l, mid, rk), Build(rson, mid + 1, r, rk);
Push_up(i);
}
void Push_down(int i) {
if(tree[i].lazy) {
tree[lson].lazy ^= 1, tree[rson].lazy ^= 1;
tree[lson].sum = tree[lson].len - tree[lson].sum;
tree[rson].sum = tree[rson].len - tree[rson].sum;
tree[i].lazy = 0;
}
}
void Xor(int i, int l, int r, int L, int R, int val) {
if(L <= l && r <= R) {
tree[i].sum = tree[i].len - tree[i].sum;
tree[i].lazy ^= val;
return ;
}
Push_down(i);
int mid = (l + r) >> 1;
if(mid >= L) Xor(lson, l, mid, L, R, val);
if(mid < R) Xor(rson, mid + 1, r, L, R, val);
Push_up(i);
}
int Get_sum(int i, int l, int r, int L, int R) {
if(L <= l && r <= R) return tree[i].sum;
Push_down(i);
int mid = (l + r) >> 1, ans = 0;
if(mid >= L) ans += Get_sum(lson, l, mid, L, R);
if(mid < R) ans += Get_sum(rson, mid + 1, r, L, R);
return ans;
}
}Seg[21];
signed main()
{
n = read();
for(int i = 1, x; i <= n; ++i) {
x = read();
for(int j = 0; j <= 20; ++j) a[j][i] = ((x >> j) & 1);
}
for(int i = 0; i <= 20; ++i) Seg[i].Build(1, 1, n, i);
m = read();
for(int i = 1, opt, l, r, x; i <= m; ++i) {
opt = read(), l = read(), r = read();
if(opt == 1) {
ans = 0;
for(int j = 0; j <= 20; ++j) ans += (1 << j) * Seg[j].Get_sum(1, 1, n, l, r);
printf("%lld\n", ans);
} else {
x = read();
for(int j = 0; j <= 20; ++j) {
if((x >> j) & 1) Seg[j].Xor(1, 1, n, l, r, 1);
}
}
}
return 0;
}
CF438D The Child and Sequence
Description
[链接登录后可见]
Solution
特点在于区间取模
其实和 花神游历各国 和 GSS4 的思路类似
可以证明:如果模数 m \le x,则 x \mod m < \frac{x}{2}
那么最多只会模 \log x 次,和区间开方一样的处理方式即可(维护一个区间最值,暴力开方)
证明:
如果 m > x, 那么 x \mod m = x
如果 m < x,考虑如何让 x 剩下的值最大?一个显然的想法是模数 m 尽可能大
如果 m > \frac{x}{2} ,那么剩下的一定小于 \frac{x}{2},如果 m < \frac{x}{2},那么更不必说了,所以当 m = \frac{x}{2} 时,x 剩下的值最大,所以 x 最多进行取模 \log x 次
代码的话,应该和区间开方差不多吧
Code
/*
Work by: Suzt_ilymics
Knowledge: ??
Time: O(??)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
#define int long long
#define orz cout<<"lkp AK IOI!"<<endl
using namespace std;
const int MAXN = 1e5+5;
const int INF = 1e9+7;
const int mod = 1e9+7;
int n, m;
int a[MAXN];
int read(){
int s = 0, f = 0;
char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while(isdigit(ch)) s = (s << 1) + (s << 3) + ch - '0' , ch = getchar();
return f ? -s : s;
}
namespace Seg{
#define lson i << 1
#define rson i << 1 | 1
struct Tree{
int sum, max;
}tree[MAXN << 2];
void Push_up(int i) {
tree[i].sum = tree[lson].sum + tree[rson].sum;
tree[i].max = max(tree[lson].max, tree[rson].max);
}
void Build(int i, int l, int r) {
if(l == r) {
tree[i].max = tree[i].sum = a[l];
return ;
}
int mid = (l + r) >> 1;
Build(lson, l, mid), Build(rson, mid + 1, r);
Push_up(i);
}
void Change(int i, int l, int r, int L, int R, int k) {
if(L <= l && r <= R) {
tree[i].max = tree[i].sum = k;
return ;
}
int mid = (l + r) >> 1;
if(mid >= L) Change(lson, l, mid, L, R, k);
else Change(rson, mid + 1, r, L, R, k);
Push_up(i);
}
void Sec_Mod(int i, int l, int r, int L, int R, int k) {
if(tree[i].max < k) return ;
if(l == r) {
tree[i].sum = tree[i].max = tree[i].sum % k;
return ;
}
int mid = (l + r) >> 1;
if(mid >= L) Sec_Mod(lson, l, mid, L, R, k);
if(mid < R) Sec_Mod(rson, mid + 1, r, L, R, k);
Push_up(i);
}
int Get_Sum(int i, int l, int r, int L, int R) {
if(L <= l && r <= R) return tree[i].sum;
int mid = (l + r) >> 1, ans = 0;
if(mid >= L) ans += Get_Sum(lson, l, mid, L, R);
if(mid < R) ans += Get_Sum(rson, mid + 1, r, L, R);
return ans;
}
}
signed main()
{
n = read(), m = read();
for(int i = 1; i <= n; ++i) a[i] = read();
Seg::Build(1, 1, n);
for(int i = 1, opt, l, r, k; i <= m; ++i) {
opt = read(), l = read(), r = read();
if(opt == 1) printf("%lld\n", Seg::Get_Sum(1, 1, n, l, r));
else if(opt == 2) k = read(), Seg::Sec_Mod(1, 1, n, l, r, k);
else Seg::Change(1, 1, n, l, l, r);
}
return 0;
}